Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.159
1.
Anticancer Res ; 44(5): 2091-2094, 2024 May.
Article En | MEDLINE | ID: mdl-38677729

BACKGROUND/AIM: Cathepsin G (CTSG) has been identified as an inhibitor of breast, bladder, and colorectal cancers. The G allele of the N125S (A/G, rs45567233) functional polymorphism of the CTSG gene confers increased serum CTSG activity and has been associated with cardiovascular and neurovascular diseases. This study examined the possible correlation between the pathogenesis of basal cell carcinoma (BCC) and the functional polymorphism CTSG N125S. PATIENTS AND METHODS: A total of 197 DNA samples were examined, comprising 98 BCC patients and 99 control samples of Greek origin. The CTSG N125S polymorphism was molecularly genotyped using PCR amplification, followed by enzyme digestion, and agarose gel electrophoresis of the amplified DNA fragments. RESULTS: There was no statistically significant difference in the genotypic and allelic frequencies between the patient and the control groups. CONCLUSION: There is no association between the CTSG N125S polymorphism and pathogenesis of BCC.


Carcinoma, Basal Cell , Cathepsin G , Genetic Predisposition to Disease , Humans , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Female , Male , Middle Aged , Cathepsin G/genetics , Aged , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Gene Frequency , Case-Control Studies , Polymorphism, Single Nucleotide , Genotype , Aged, 80 and over , Adult , Risk Factors
2.
Molecules ; 29(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38474630

Despite many years of research, human neutrophil elastase (HNE) still remains an area of interest for many researchers. This multifunctional representative of neutrophil serine proteases is one of the most destructive enzymes found in the human body which can degrade most of the extracellular matrix. Overexpression or dysregulation of HNE may lead to the development of several inflammatory diseases. Previously, we presented the HNE inhibitor with kinact/KI value over 2,000,000 [M-1s-1]. In order to optimize its structure, over 100 novel tripeptidyl derivatives of α-aminoalkylphosphonate diaryl esters were synthesized, and their activity toward HNE was checked. To confirm the selectivity of the resultant compounds, several of the most active were additionally checked against the two other neutrophil proteases: proteinase 3 and cathepsin G. The developed modifications allowed us to obtain a compound with significantly increased inhibitory activity against human neutrophil elastase with high selectivity toward cathepsin G, but none toward proteinase 3.


Leukocyte Elastase , Serine Proteases , Humans , Leukocyte Elastase/metabolism , Cathepsin G , Myeloblastin/chemistry , Serine Proteinase Inhibitors/pharmacology
3.
Ren Fail ; 46(1): 2316269, 2024 Dec.
Article En | MEDLINE | ID: mdl-38362707

BACKGROUND: Arteriovenous fistula (AVF) is currently the preferred vascular access for hemodialysis patients. However, the low maturation rate of AVF severely affects its use in patients. A more comprehensive understanding and study of the mechanisms of AVF maturation is urgently needed. METHODS AND RESULTS: In this study, we downloaded the publicly available datasets (GSE119296 and GSE220796) from the Gene Expression Omnibus (GEO) and merged them for subsequent analysis. We screened 84 differentially expressed genes (DEGs) and performed the functional enrichment analysis. Next, we integrated the results obtained from the degree algorithm provided by the Cytohubba plug-in, Molecular complex detection (MCODE) plug-in, weighted gene correlation network analysis (WGCNA), and Least absolute shrinkage and selection operator (LASSO) logistic regression. This integration allowed us to identify CTSG as a hub gene associated with AVF maturation. Through the literature search and Pearson's correlation analysis, the genes matrix metalloproteinase 2 (MMP2) and MMP9 were identified as potential downstream effectors of CTSG. We then collected three immature clinical AVF vein samples and three mature samples and validated the expression of CTSG using immunohistochemistry (IHC) and double-immunofluorescence staining. The IHC results demonstrated a significant decrease in CTSG expression levels in the immature AVF vein samples compared to the mature samples. The results of double-immunofluorescence staining revealed that CTSG was expressed in both the intima and media of AVF veins. Moreover, the expression of CTSG in vascular smooth muscle cells (VSMCs) was significantly higher in the mature samples compared to the immature samples. The results of Masson's trichrome and collagen I IHC staining demonstrated a higher extent of collagen deposition in the media of immature AVF veins compared to the mature. By constructing an in vitro CTSG overexpression model in VSMCs, we found that CTSG upregulated the expression of MMP2 and MMP9 while downregulating the expression of collagen I and collagen III. Furthermore, CTSG was found to inhibit VSMC migration. CONCLUSIONS: CTSG may promote AVF maturation by stimulating the secretion of MMP2 and MMP9 from VSMCs and reducing the extent of medial fibrosis in AVF veins by inhibiting the secretion of collagen I and collagen III.


Arteriovenous Fistula , Arteriovenous Shunt, Surgical , Humans , Arteriovenous Shunt, Surgical/adverse effects , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Cathepsin G , Renal Dialysis/methods , Collagen , Collagen Type I , Arteriovenous Fistula/etiology
4.
J Neuroinflammation ; 21(1): 41, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38310257

Monocytes represent key cellular elements that contribute to the neurological sequela following brain injury. The current study reveals that trauma induces the augmented release of a transcriptionally distinct CD115+/Ly6Chi monocyte population into the circulation of mice pre-exposed to clodronate depletion conditions. This phenomenon correlates with tissue protection, blood-brain barrier stability, and cerebral blood flow improvement. Uniquely, this shifted the innate immune cell profile in the cortical milieu and reduced the expression of pro-inflammatory Il6, IL1r1, MCP-1, Cxcl1, and Ccl3 cytokines. Monocytes that emerged under these conditions displayed a morphological and gene profile consistent with a subset commonly seen during emergency monopoiesis. Single-cell RNA sequencing delineated distinct clusters of monocytes and revealed a key transcriptional signature of Ly6Chi monocytes enriched for Apoe and chitinase-like protein 3 (Chil3/Ym1), commonly expressed in pro-resolving immunoregulatory monocytes, as well as granule genes Elane, Prtn3, MPO, and Ctsg unique to neutrophil-like monocytes. The predominate shift in cell clusters included subsets with low expression of transcription factors involved in monocyte conversion, Pou2f2, Na4a1, and a robust enrichment of genes in the oxidative phosphorylation pathway which favors an anti-inflammatory phenotype. Transfer of this monocyte assemblage into brain-injured recipient mice demonstrated their direct role in neuroprotection. These findings reveal a multifaceted innate immune response to brain injury and suggest targeting surrogate monocyte subsets may foster tissue protection in the brain.


Brain Injuries , Monocytes , Mice , Animals , Monocytes/metabolism , Neutrophils/metabolism , Brain Injuries/metabolism , Brain/metabolism , Gene Expression Profiling , Cathepsin G/metabolism
5.
Cancer Prev Res (Phila) ; 17(2): 59-75, 2024 02 02.
Article En | MEDLINE | ID: mdl-37956420

Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE: Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.


Leukemia, Promyelocytic, Acute , PPAR delta , Animals , Mice , Cathepsin G , Diet, High-Fat/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Obesity/complications , Oncogene Proteins, Fusion/genetics , PPAR delta/therapeutic use
6.
Front Cell Infect Microbiol ; 13: 1253670, 2023.
Article En | MEDLINE | ID: mdl-37965264

Tick serine protease inhibitors (serpins) play crucial roles in tick feeding and pathogen transmission. We demonstrate that Ixodes scapularis (Ixs) nymph tick saliva serpin (S) 41 (IxsS41), secreted by Borrelia burgdorferi (Bb)-infected ticks at high abundance, is involved in regulating tick evasion of host innate immunity and promoting host colonization by Bb. Recombinant (r) proteins were expressed in Pichia pastoris, and substrate hydrolysis assays were used to determine. Ex vivo (complement and hemostasis function related) and in vivo (paw edema and effect on Bb colonization of C3H/HeN mice organs) assays were conducted to validate function. We demonstrate that rIxsS41 inhibits chymase and cathepsin G, pro-inflammatory proteases that are released by mast cells and neutrophils, the first immune cells at the tick feeding site. Importantly, stoichiometry of inhibition analysis revealed that 2.2 and 2.8 molecules of rIxsS41 are needed to 100% inhibit 1 molecule of chymase and cathepsin G, respectively, suggesting that findings here are likely events at the tick feeding site. Furthermore, chymase-mediated paw edema, induced by the mast cell degranulator, compound 48/80 (C48/80), was blocked by rIxsS41. Likewise, rIxsS41 reduced membrane attack complex (MAC) deposition via the alternative and lectin complement activation pathways and dose-dependently protected Bb from complement killing. Additionally, co-inoculating C3H/HeN mice with Bb together with rIxsS41 or with a mixture (rIxsS41 and C48/80). Findings in this study suggest that IxsS41 markedly contributes to tick feeding and host colonization by Bb. Therefore, we conclude that IxsS41 is a potential candidate for an anti-tick vaccine to prevent transmission of the Lyme disease agent.


Borrelia burgdorferi , Ixodes , Lyme Disease , Serpins , Mice , Animals , Ixodes/physiology , Chymases , Nymph , Cathepsin G , Saliva/metabolism , Mice, Inbred C3H , Inflammation , Serpins/metabolism , Complement System Proteins , Edema
7.
Arterioscler Thromb Vasc Biol ; 43(10): e396-e403, 2023 10.
Article En | MEDLINE | ID: mdl-37586040

BACKGROUND: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare syndrome characterized by platelet anti-PF4 (platelet-activating antiplatelet factor 4)-related thrombosis. Platelet-neutrophil interaction has been suggested to play a role, but the underlying mechanism has not been fully elucidated. METHODS: The study included 10 patients with VITT after ChAdOx1 (chimpanzee adenovirus Oxford 1) nCoV-19 (Oxford-AstraZeneca) vaccine administration, 10 patients with ischemic stroke (IS), 10 patients with acute deep vein thrombosis, and 10 control subjects in whom blood levels of neutrophil extracellular traps (NETs), soluble TF (tissue factor), and thrombin generation were examined. Furthermore, we performed in vitro studies comparing the effect of serum from patients and controls on NETs formation. Finally, immunohistochemistry was performed in cerebral thrombi retrieved from a patients with VITT and 3 patients with IS. RESULTS: Compared with patients with IS, patients with deep vein thrombosis, controls, and patients with VITT had significantly higher blood values of CitH3 (citrullinated histone H3), soluble TF, D-dimer, and prothrombin fragment 1+2 (P<0.0001). Blood CitH3 significantly correlated with blood soluble TF (Spearman rank correlation coefficient=0.7295; P=0.0206) and prothrombin fragment 1+2 (Spearman rank correlation coefficient=0.6809; P<0.0350) in patients with VITT. Platelet-neutrophil mixture added with VITT plasma resulted in higher NETs formation, soluble TF and thrombin generation, and platelet-dependent thrombus growth under laminar flow compared with IS and deep vein thrombosis plasma; these effects were blunted by PAD4 (protein arginine deiminase 4) and cathepsin G inhibitors, anti-FcγRIIa (Fc receptor for IgG class IIa), and high doses of heparin. Immunohistochemistry analysis showed a more marked expression of PAD4 along with more diffuse neutrophil infiltration and NETs formation as well as TF and cathepsin expression in VITT thrombus compared with thrombi from patients with IS. CONCLUSIONS: Patients with VITT display enhanced thrombogenesis by PAD4-mediated NETs formation via cathepsin G-mediated platelet/neutrophil interaction.


Thrombocytopenia , Thrombosis , Vaccines , Humans , Neutrophils , Cathepsin G , Thrombin , Thrombosis/prevention & control
8.
J Biol Chem ; 299(7): 104878, 2023 07.
Article En | MEDLINE | ID: mdl-37269950

Extracellular adherence protein domain (EAP) proteins are high-affinity, selective inhibitors of neutrophil serine proteases (NSP), including cathepsin-G (CG) and neutrophil elastase (NE). Most Staphylococcus aureus isolates encode for two EAPs, EapH1 and EapH2, that contain a single functional domain and share 43% identity with one another. Although structure/function investigations from our group have shown that EapH1 uses a globally similar binding mode to inhibit CG and NE, NSP inhibition by EapH2 is incompletely understood due to a lack of NSP/EapH2 cocrystal structures. To address this limitation, we further studied NSP inhibition by EapH2 in comparison with EapH1. Like its effects on NE, we found that EapH2 is a reversible, time-dependent, and low nanomolar affinity inhibitor of CG. We characterized an EapH2 mutant which suggested that the CG binding mode of EapH2 is comparable to EapH1. To test this directly, we used NMR chemical shift perturbation to study EapH1 and EapH2 binding to CG and NE in solution. Although we found that overlapping regions of EapH1 and EapH2 were involved in CG binding, we found that altogether distinct regions of EapH1 and EapH2 experienced changes upon binding to NE. An important implication of this observation is that EapH2 might be capable of binding and inhibiting CG and NE simultaneously. We confirmed this unexpected feature by solving crystal structures of the CG/EapH2/NE complex and demonstrating their functional relevance through enzyme inhibition assays. Together, our work defines a new mechanism of simultaneous inhibition of two serine proteases by a single EAP protein.


Bacterial Proteins , Immune Evasion , Serine Proteases , Staphylococcus aureus , Bacterial Proteins/metabolism , Cathepsin G , Leukocyte Elastase/metabolism , Neutrophils/metabolism , Serine Proteases/genetics , Staphylococcus aureus/metabolism
9.
Int J Biol Sci ; 19(7): 2220-2233, 2023.
Article En | MEDLINE | ID: mdl-37151875

Colorectal cancer (CRC) is the most common gastrointestinal tumor worldwide, which is a severe malignant disease that threatens mankind. Cathepsin G (CTSG) has been reported to be associated with tumorigenesis, whereas its role in CRC is still unclear. This investigation aims to determine the function of CTSG in CRC. Our results indicated that CTSG was inhibited in CRC tissues, and patients with CTSG low expression have poor overall survival. Functional experiments revealed that CTSG overexpression suppressed CRC cell progression in vitro and in vivo, whereas CTSG suppression supports CRC development cells in vitro and in vivo. Mechanistically, CTSG overexpression suppressed Akt/mTOR signaling mechanism and elevated apoptotic-associated markers, and CTSG silencing activated Akt/mTOR signaling mechanisms and inhibited apoptotic-associated markers. Furthermore, the Akt suppression signaling pathway by MK2206 abolishes CTSG-silenced expression-induced cell viability and Bcl2 up-regulation in vitro and in vivo. Altogether, these outcomes demonstrate that CTSG may act as a tumor suppressor gene via Akt/mTOR/Bcl2-mediated anti-apoptotic signaling inactivation, and CTSG represents a potential therapeutic target in CRC.


Colorectal Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Cathepsin G/genetics , Cathepsin G/metabolism , Colorectal Neoplasms/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
10.
Biomolecules ; 13(5)2023 04 27.
Article En | MEDLINE | ID: mdl-37238630

Cathepsin G (CatG) is a pro-inflammatory neutrophil serine protease that is important for host defense, and has been implicated in several inflammatory disorders. Hence, inhibition of CatG holds much therapeutic potential; however, only a few inhibitors have been identified to date, and none have reached clinical trials. Of these, heparin is a well-known inhibitor of CatG, but its heterogeneity and bleeding risk reduce its clinical potential. We reasoned that synthetic small mimetics of heparin, labeled as non-saccharide glycosaminoglycan mimetics (NSGMs), would exhibit potent CatG inhibition while being devoid of bleeding risks associated with heparin. Hence, we screened a focused library of 30 NSGMs for CatG inhibition using a chromogenic substrate hydrolysis assay and identified nano- to micro-molar inhibitors with varying levels of efficacy. Of these, a structurally-defined, octasulfated di-quercetin NSGM 25 inhibited CatG with a potency of ~50 nM. NSGM 25 binds to CatG in an allosteric site through an approximately equal contribution of ionic and nonionic forces. Octasulfated 25 exhibits no impact on human plasma clotting, suggesting minimal bleeding risk. Considering that octasulfated 25 also potently inhibits two other pro-inflammatory proteases, human neutrophil elastase and human plasmin, the current results imply the possibility of a multi-pronged anti-inflammatory approach in which these proteases are likely to simultaneously likely combat important conditions, e.g., rheumatoid arthritis, emphysema, or cystic fibrosis, with minimal bleeding risk.


Cathepsin G , Glycosaminoglycans , Heparin , Humans , Cathepsin G/antagonists & inhibitors , Endopeptidases , Glycosaminoglycans/pharmacology , Heparin/pharmacology , Peptide Hydrolases
11.
Front Immunol ; 14: 1151754, 2023.
Article En | MEDLINE | ID: mdl-37063885

Mast cells are tissue-resident cells playing major roles in homeostasis and disease conditions. Lung mast cells are particularly important in airway inflammatory diseases such as asthma. Human mast cells are classically divided into the subsets MCT and MCTC, where MCT express the mast cell protease tryptase and MCTC in addition express chymase, carboxypeptidase A3 (CPA3) and cathepsin G. Apart from the disctintion of the MCT and MCTC subsets, little is known about the heterogeniety of human lung mast cells and a deep analysis of their heterogeniety has previously not been performed. We therefore performed single cell RNA sequencing on sorted human lung mast cells using SmartSeq2. The mast cells showed high expression of classical mast cell markers. The expression of several individual genes varied considerably among the cells, however, no subpopulations were detected by unbiased clustering. Variable genes included the protease-encoding transcripts CMA1 (chymase) and CTSG (cathepsin G). Human lung mast cells are predominantly of the MCT subset and consistent with this, the expression of CMA1 was only detectable in a small proportion of the cells, and correlated moderately to CTSG. However, in contrast to established data for the protein, CPA3 mRNA was high in all cells and the correlation of CPA3 to CMA1 was weak.


Mast Cells , Peptide Hydrolases , Humans , Chymases/genetics , Chymases/metabolism , Mast Cells/metabolism , Cathepsin G , Peptide Hydrolases/metabolism , Tryptases/genetics , Tryptases/metabolism , Lung/metabolism , Sequence Analysis, RNA
12.
J Neuroinflammation ; 20(1): 70, 2023 Mar 11.
Article En | MEDLINE | ID: mdl-36906528

BACKGROUND: Neutrophil serine proteinases (NSPs), released by activated neutrophils, are key proteins involved in the pathophysiologic processes of stroke. NSPs are also implicated in the process and response of thrombolysis. This study aimed to analyze three NSPs (neutrophil elastase, cathepsin G, and proteinase 3) in relation to acute ischemic stroke (AIS) outcomes and in relation to the outcomes of patients treated with intravenous recombinant tissue plasminogen activator (IV-rtPA). METHODS: Among 736 patients prospectively recruited at the stroke center from 2018 to 2019, 342 patients diagnosed with confirmed AIS were included. Plasma neutrophil elastase (NE), cathepsin G (CTSG), and proteinase 3 (PR3) concentrations were measured on admission. The primary endpoint was unfavorable outcome defined as modified Rankin Scale score 3-6 at 3 months, and the secondary endpoints were symptomatic intracerebral hemorrhage (sICH) within 48 h, and mortality within 3 months. In the subgroup of patients who received IV-rtPA, post-thrombolysis early neurological improvement (ENI) (defined as National Institutes of Health Stroke Scale score = 0 or decrease of ≥ 4 within 24 h after thrombolysis) was also included as the secondary endpoint. Univariate and multivariate logistic regression analyses were performed to evaluate the association between NSPs levels and AIS outcomes. RESULTS: Higher NE and PR3 plasma levels were associated with the 3-month mortality and 3-month unfavorable outcome. Higher NE plasma levels were also associated with the risk of sICH after AIS. After adjusting for potential confounders, plasma NE level > 229.56 ng/mL (odds ratio [OR] = 4.478 [2.344-8.554]) and PR3 > 388.77 ng/mL (OR = 2.805 [1.504-5.231]) independently predicted the 3-month unfavorable outcome. Regarding rtPA treatment, patients with NE plasma concentration > 177.22 ng/mL (OR = 8.931 [2.330-34.238]) or PR3 > 388.77 ng/mL (OR = 4.275 [1.045-17.491]) were over 4 times more likely to suffer unfavorable outcomes after rtPA treatment. The addition of NE and PR3 to clinical predictors of unfavorable functional outcome after AIS and the outcome after rtPA treatment improved discrimination as well as reclassification (integrated discrimination improvement = 8.2% and 18.1%, continuous net reclassification improvement = 100.0% and 91.8%, respectively). CONCLUSIONS: Plasma NE and PR3 are novel and independent predictors of 3-month functional outcomes after AIS. Plasma NE and PR3 also possess predictive value to identify patients with unfavorable outcomes after rtPA treatment. NE is probably an important mediator of the effects of neutrophils on stroke outcomes, which worth further investigation.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator/adverse effects , Fibrinolytic Agents/therapeutic use , Neutrophils , Leukocyte Elastase , Cathepsin G , Ischemic Stroke/drug therapy , Thrombolytic Therapy , Prospective Studies , Myeloblastin , Brain Ischemia/drug therapy , Treatment Outcome , Stroke/drug therapy , Cerebral Hemorrhage/drug therapy , Retrospective Studies
13.
J Biol Chem ; 299(3): 102969, 2023 03.
Article En | MEDLINE | ID: mdl-36736422

Extracellular adherence protein domain (EAPs) proteins are a class of innate immune evasion proteins secreted by the human pathogen Staphylococcus aureus. EAPs are potent and selective inhibitors of cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant neutrophil serine proteases (NSPs). Previous work from our group has shown that the prototypical EAP, EapH1, relies on plasticity within a single inhibitory site to block the activities of CG and NE. However, whether other EAPs follow similar structure-function relationships is unclear. To address this question, we studied the inhibitory properties of the first (Eap1) and second (Eap2) domains of the modular extracellular adherence protein of S. aureus and determined their structures when bound to CG and NE, respectively. We observed that both Eap1 and Eap2 displayed time-dependent inhibition of CG (on the order of 10-9 M) and of NE (on the order of 10-10 M). We also found that whereas the structures of Eap1 and Eap2 bound to CG showed an overall inhibitory mode like that seen previously for EapH1, the structures of Eap1 and Eap2 bound to NE revealed a new inhibitory mode involving a distal region of the EAP domain. Using site-directed mutagenesis of Eap1 and Eap2, along with enzyme assays, we confirmed the roles of interfacial residues in NSP inhibition. Taken together, our work demonstrates that EAPs can form structurally divergent complexes with two closely related serine proteases and further suggests that certain EAPs may be capable of inhibiting two NSPs simultaneously.


Bacterial Proteins , Immune Evasion , Neutrophils , Serine Proteases , Staphylococcus aureus , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cathepsin G/metabolism , Leukocyte Elastase/metabolism , Neutrophils/enzymology , Neutrophils/microbiology , Serine Proteases/genetics , Serine Proteases/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
14.
J Hum Genet ; 68(6): 419-425, 2023 Jun.
Article En | MEDLINE | ID: mdl-36828876

Generalized pustular psoriasis (GPP) is an autoinflammatory skin disease whose pathogenesis has not yet been fully elucidated. Alpha-1-antichymotrypsin(ACT) is a protein encoded by the SERPINA3 gene and an inhibitor of cathepsin G. One study of a European sample suggested that the loss of ACT function caused by SERPINA3 mutation is implicated in GPP. However, the role of SERPINA3 in the pathogenesis of GPP in other ethnic populations is unclear. To explore this, seventy children with GPP were performed next-generation sequencing to identify rare variants in the SERPINA3 gene. Bioinformatic analysis and functional tests were used to determine the effects of the variants, and a comprehensive analysis was performed to determine the pathogenicity of the variants and whether they are associated with GPP. One rare deletion and three rare missense variants were identified in the SERPINA3 gene in GPP. The deletion variant c.1246_1247del was found to result in a mutant protein with an extension of 10 amino acids and a C-terminal of 20 amino acids that was completely different from the wild-type. This mutant was found to impede secretion of ACT, thus failing to function as an inhibitor of cathepsin G. Two missense variants were found to reduce the ability of ACT to inhibit cathepsin G enzymatic activity. The association analysis suggested that the deletion variant is associated with GPP. This study identified four rare novel mutations of SERPINA3 and demonstrated that three of these mutations result in loss of function, contributing to the pathogenesis of pediatric-onset GPP in the Asian population.


Psoriasis , Serpins , Skin Diseases , Child , Humans , Interleukins/genetics , Interleukins/metabolism , Cathepsin G/genetics , Psoriasis/drug therapy , Psoriasis/genetics , Mutation , Serpins/genetics
15.
Arthritis Rheumatol ; 75(5): 794-805, 2023 05.
Article En | MEDLINE | ID: mdl-36457235

OBJECTIVE: In gout, hyperuricemia promotes urate crystal deposition, which stimulates the NLRP3 inflammasome and interleukin-1ß (IL-1ß)-mediated arthritis. Incident gout without background hyperuricemia is rarely reported. To identify hyperuricemia-independent mechanisms driving gout incidence and progression, we characterized erosive urate crystalline inflammatory arthritis in a young female patient with normouricemia diagnosed as having sufficient and weighted classification criteria for gout according to the American College of Rheumatology (ACR)/EULAR gout classification criteria (the proband). METHODS: We conducted whole-genome sequencing, quantitative proteomics, whole-blood RNA-sequencing analysis using serum samples from the proband. We used a mouse model of IL-1ß-induced knee synovitis to characterize proband candidate genes, biomarkers, and pathogenic mechanisms of gout. RESULTS: Lubricin level was attenuated in human proband serum and associated with elevated acute-phase reactants and inflammatory whole-blood transcripts and transcriptional pathways. The proband had predicted damaging gene variants of NLRP3 and of inter-α trypsin inhibitor heavy chain 3, an inhibitor of lubricin-degrading cathepsin G. Changes in the proband's serum protein interactome network supported enhanced lubricin degradation, with cathepsin G activity increased relative to its inhibitors, SERPINB6 and thrombospondin 1. Activation of Toll-like receptor 2 (TLR-2) suppressed levels of lubricin mRNA and lubricin release in cultured human synovial fibroblasts (P < 0.01). Lubricin blunted urate crystal precipitation and IL-1ß induction of xanthine oxidase and urate in cultured macrophages (P < 0.001). In lubricin-deficient mice, injection of IL-1ß in knees increased xanthine oxidase-positive synovial resident M1 macrophages (P < 0.05). CONCLUSION: Our findings linked normouricemic erosive gout to attenuated lubricin, with impaired control of cathepsin G activity, compounded by deleterious NLRP3 variants. Lubricin suppressed monosodium urate crystallization and blunted IL-1ß-induced increases in xanthine oxidase and urate in macrophages. The collective activities of articular lubricin that could limit incident and erosive gouty arthritis independently of hyperuricemia are subject to disruption by inflammation, activated cathepsin G, and synovial fibroblast TLR-2 signaling.


Arthritis, Gouty , Gout , Hyperuricemia , Female , Humans , Mice , Animals , Toll-Like Receptor 2/genetics , Cathepsin G/adverse effects , Uric Acid , NLR Family, Pyrin Domain-Containing 3 Protein , Xanthine Oxidase , Gout/genetics , Inflammation/metabolism , Interleukin-1beta/metabolism
16.
Biol Pharm Bull ; 45(12): 1772-1783, 2022.
Article En | MEDLINE | ID: mdl-36450530

Solid tumors habitually harbor regions with insufficient oxygen away from vasculature. Hypoxia is an important factor that confers malignant phenotypes like chemoresistance to tumor cells. We have demonstrated that cathepsin G (CG) stimulates cell aggregation in breast cancer MCF-7 cells by activating insulin-like growth factor-1 signaling. We investigated whether cancer cell aggregates induced by CG acquire hypoxia-dependent chemoresistance. Pimonidazole staining and hypoxia-inducible factor (HIF)-1α and -2α expression indicated that the core of the cell aggregates was hypoxic. Electrophoretic mobility shift and reporter assays showed that the CG-induced cell aggregates displayed transcriptional activity through HIF-responsive elements. Moreover, HIF target genes PGK1 and SLC2A1 demonstrated upregulated expression in CG-induced cell aggregates, indicating that the aggregates expressed functional HIF. Doxorubicin (DXR)-induced cytotoxicity was significantly lower in the cell aggregates induced by CG compared with monolayer cells under normoxia. Unexpectedly, the upregulation of P-glycoprotein expression, which is reported to be a HIF-target gene, and decreasing intracellular accumulation of DXR was not detected in the cell aggregates as opposed to in monolayer cells under normoxia. Additionally, reduction of DXR sensitivity in the aggregates was not suppressed by treatment with the HIF inhibitor, YC-1 and HIF-1α small interfering RNA (siRNA). Therefore, we conclude that cell aggregation induced by CG decreases DXR sensitivity via a HIF-independent mechanism.


Doxorubicin , Neoplasms , Humans , Cathepsin G , MCF-7 Cells , Doxorubicin/pharmacology , Cell Aggregation , RNA, Small Interfering , Hypoxia
17.
Trans Am Clin Climatol Assoc ; 132: 92-103, 2022.
Article En | MEDLINE | ID: mdl-36196164

Type 2 inflammation (T2I) underlies the pathogenesis of asthma, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. Mast cells (MCs) are tissue resident hematopoietic effector cells thought to play major roles in T2I. Two subtypes of human MCs are recognized based on immunohistochemical differences. MCs expressing tryptase but not chymase (MCT) reside within mucosal epithelial surfaces, and MCs expressing tryptase, chymase, and cathepsin G (MCTC) reside in submucosal, perivascular and intraneural locations. During T2I, MCs (particularly MCT) increase markedly by unclear mechanisms. Single cell genomic studies reveal that traditional histochemical categorization vastly underestimates the extent of MC functional heterogeneity. MCT and MCTC likely reflect endpoints of a developmental continuum, emerging from a transitional stage of development in which MCs expand through in situ proliferation. This mechanism, likely driven by interleukin 4 and other cytokines, is unique among granulocytes and carries substantial implications for pathogenesis and therapy of T2I-associated diseases.


Interleukin-4 , Mast Cells , Cathepsin G/metabolism , Humans , Inflammation , Interleukin-4/metabolism , Tryptases/metabolism
18.
Biomolecules ; 12(10)2022 09 27.
Article En | MEDLINE | ID: mdl-36291595

Alzheimer's disease (AD) is a multifactorial disease with a complex pathogenesis. Developing multitarget drugs could be a powerful strategy to impact the progressive loss of cognitive functions in this disease. The purpose of this study is to select a multitarget lead peptide candidate among a series of peptide variants derived from the neutrophil granule protein cathepsin G. We screened eight peptide candidates using the following criteria: (1) Inhibition and reversion of amyloid beta (Aß) oligomers, quantified using an enzyme-linked immunosorbent assay (ELISA); (2) direct binding of peptide candidates to the human receptor for advanced glycation end-products (RAGE), the Toll-like receptor 4 (TLR4) and the S100 calcium-binding protein A9 (S100A9), quantified by ELISA; (3) protection against Aß oligomer-induced neuronal cell death, using trypan blue to measure cell death in a murine neuronal cell line; (4) inhibition of TLR4 activation by S100A9, using a human TLR4 reporter cell line. We selected a 27-mer lead peptide that fulfilled these four criteria. This lead peptide is a privileged structure that displays inherent multitarget activity. This peptide is expected to significantly impact cognitive decline in mouse models of Alzheimer's disease, by targeting both neuroinflammation and neurodegeneration.


Alzheimer Disease , Animals , Mice , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Toll-Like Receptor 4/metabolism , Receptor for Advanced Glycation End Products/metabolism , Cathepsin G/metabolism , Trypan Blue , Calcium-Binding Proteins
19.
Sci Adv ; 8(41): eabo5224, 2022 10 14.
Article En | MEDLINE | ID: mdl-36223471

Despite abundant research demonstrating that platelets can promote tumor cell metastasis, whether primary tumors affect platelet-producing megakaryocytes remains understudied. In this study, we used a spontaneous murine model of breast cancer to show that tumor burden reduced megakaryocyte number and size and disrupted polyploidization. Single-cell RNA sequencing demonstrated that megakaryocytes from tumor-bearing mice exhibit a pro-inflammatory phenotype, epitomized by increased Ctsg, Lcn2, S100a8, and S100a9 transcripts. Protein S100A8/A9 and lipocalin-2 levels were also increased in platelets, suggesting that tumor-induced alterations to megakaryocytes are passed on to their platelet progeny, which promoted in vitro tumor cell invasion and tumor cell lung colonization to a greater extent than platelets from wild-type animals. Our study is the first to demonstrate breast cancer-induced alterations in megakaryocytes, leading to qualitative changes in platelet content that may feedback to promote tumor metastasis.


Megakaryocytes , Neoplasms , Animals , Blood Platelets/metabolism , Cathepsin G/metabolism , Disease Models, Animal , Gene Expression , Lipocalin-2/metabolism , Mice , Neoplasms/metabolism
20.
Biochem Biophys Res Commun ; 628: 25-31, 2022 11 05.
Article En | MEDLINE | ID: mdl-36063599

α-1-antichymotrypsin (ACT) is a serine proteinase inhibitor that controls the activity of proteases like chymotrypsin, cathepsin G and mast cell chymase. Familial variants of ACT results in liver and lung diseases, but it is also reported to be associated with several other disease conditions. ACT is mainly synthesized in the liver using four coding exons, namely E1, E2, E3 and E4 encoding a 423 amino acid protein that also includes a 23 amino acid signal peptide. It is found to be associated with amyloid plaques and is elevated during inflammatory response and modulates cytokine based signal transduction pathways, independent of its anti-protease activity. Therefore, the multispecificity of ACT and its non-inhibitory roles in diseased conditions warrants an assessment of possible existence of the other isoforms. Consequently, scanning of introns, 5' and 3' region of the ACT gene using computational tools like FGENESH and FEX did indicate the presence of coding regions. Using a combined approach of bioinformatics and molecular biology, we have found one novel exon located in the intronic region between exons E1 and E2, that splices with exon E2 and replaces N-terminal exon E1, generating an ACT isoform with a novel 151 base pair N-terminus. This isoform was found to lack the signal sequence and is smaller in size but its reactive centre loop remains intact. A truncated transcript was also confirmed with an extension of the E3 by a 12 nucleotide intronic region including a stop codon. Modelling studies show that due to removal of E4 this isoform lacks the RCL. Novel isoform ACT-N lacks E1 but has a conserved RCL. However, due to loss of strands of ß-sheet A, it may also be inactive, but with ability to bind the target proteases. The novel truncated ACT-T isoform lacks the RCL and may have a non-inhibitory role. These hypothesis will need further work for functional validation.


Serine Proteinase Inhibitors , Alternative Splicing , Amino Acid Sequence , Amino Acids/metabolism , Cathepsin G/metabolism , Chymases/metabolism , Chymotrypsin/metabolism , Codon, Terminator , Cytokines/metabolism , Humans , Nucleotides/metabolism , Protein Isoforms/metabolism , Protein Sorting Signals , Serine Proteinase Inhibitors/genetics , Serpins
...